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Numerical solutions to a kinetic model for the plasma-sheath problem with charge exchange
collisions of ions
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A kinetic model of the plasma-sheath problem is presented that includes the effects of charge-exchange
collisions of the ion. The collisions are modeled as a sink for accelerated ions and as a source of cold ions.
Solutions are obtained by numerical integration of Poisson’s equation from a point near the plasma midplane
to the wall. In the quasineutral region, these solutions agree with earlier analytic work. As the mean free path
is decreased, the current density at the wall decreases and the potential profile in the quasineutral region shows
a smooth transition from a parabolic profile to a nearly cubic profile determined by the ion mobility. An
approximate expression is found for the ion flux to the wall in the collisional limit.
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[. INTRODUCTION sionless units is introduced and the boundary conditions at
the midplane are derived. In Sec. Ill, Poisson’s equation is

In many laboratory plasmas the shortest mean free path isumerically integrated from a point near the midplane to the
the one for charge exchange collisions of ions. This meamvall. Solutions are obtained for a range of mean free paths
free path is often smaller than the dimensions of the plasmehat is longer and shorter than the dimensions of the plasma.
but greater than the dimensions of the sheath. In this case thg the limit of short mean free path, the solutions in the
bulk of the plasma should be modeled by equations that inquasineutral region are shown to agree with a collisional
clude the effects of collisions. Riemarjti] added charge- model based upon ion mobility. Section IV is a summary and
exchange collisions to the kinetic model of Tonks and Langconclusion.
muir [2] and obtained an analytic solution for the
guasineutral region. Riemann has also discussed in some de-
tail the effects of ion collisions on fluid models of the sheath [l. MODELS
region[3]. Monte Carlo collisions of ions have been imple-
mented in particle-in-cell codept], and these have been A homogeneous source of ionizatiély is assumed in a
used to obtain the distribution function of ions hitting the region from + to +L. The continuity equation then requires
wall [5]. For collisionless plasmas, Harrison and Thomsorthat the particle flux of ions toward the wall Bg.(x) =Rgx,

[6] obtained an analytic solution to the kinetic model valid inwhere x is measured from the midplane. The charge-
the quasineutral region. S¢lf] obtained numerical solutions exchange collisions of ions with cold neutrals are assumed to
for the collisionless case valid from the midplane to the wall.be characterized by a constant cross section and thus a con-

In this work, the kinetic mode2] is modified to include  stant mean free pathy,¢,=1/n,0, wheren, is the neutral
charge-exchange collisions. The numerical solutions preelensity andr is the collision cross section. The model makes
sented here extend the collisional solution obtained by Rieuse of the fact that these collisions do not change the value
mann[1] from the quasineutral region to the wall for the caseof J,.. The ions created by impact ionization or by charge
of a homogeneous source of ionization. The collisions ar@exchange are assumed to be born at rest. This approximation
found to reduce the current density at the wall to a valuds valid for most laboratory plasmas because the initial ion
significantly below the usual ion saturation current. Solutionsenergy is much less than the potential through which they are
are also found for the energy distribution of ions hitting thesubsequently accelerated.
wall. This distribution is important in plasma processing ap-
plications[5] and in determining plasma-wall interactions in
fusion deviceg8,9]. A. Kinetic model

In Sec. Il we present a kinetic model with two source . . _ .
terms for ions. The first term describes homogeneous genera- The dn‘fere_ntlal contr|but|orqu(x,_§) t_o th_e particle flux
tion of cold ions that could occur from energetic electrons X from particles created &t by ionization is
The flux of these ions is attenuated with distance as a result
of collisions characterized by a constant mean free path. ddo(%, &) = ReeXH — (X = &)\ mepldé, (1)
There is a second source term for cold ions that is equal to
the rate of loss of ions to these collisions. At each location
the ion density is found by integration of the upstreamwherex>¢is assumed. The contribution of these ions to the
sources. The electron density is modeled by the Boltzmang@ensity aix is found by dividing their current contribution by
relation. An alternate version of the model in which indi- their velocityv(x, &) determined from energy conservation to
vidual ions are followed is presented briefly. A set of dimen-obtain
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dJy(x,8) _ Roex— (X = /\mpl small subset of particles; thus, fluctuations are relatively
dnj o(X) = (X&) = 2q 1296 (2 Jarge. The effect of the fluctuations is reduced by finding the
' {H[Q(g) - CD(x)]J polynomial expression fo®(x) that gives the least error in
i

Poisson’s equation in an initializing region near the mid-
whereq is the elementary charggy is the ion massP(x) is plane. In addition, the charge density fluctuations are reduced
the space potential, and the subscript zero refers to ions cr€Y having the ions created uniformly in space rather than at
ated by impact ionization of neutrals. random locations. The second problem is that each particle
Those ions lost in charge-exchange collisions create afoves to each downstream grid point; thus, the ion number
equal number of new ions beginning at zero velocity. Thusdensity is not simply related to the density of ion locations.
there is a second source terRy,, that is equal to the number This problem is solved by finding the density with the same
of charge-exchange collisions per unit volume. The net fluxnethod that is used in the kinetic model.
passing through a distanck creates collisions at the rate  One computational ion is generated per grid point and the
Rex=Jnet Amip=Ro&/ A These contribute a second term to flux associated with each ion RyA¢, whereA¢ is the grid

the density ak spacing chosen to be much smaller than the Debye length
\p. The density associated with this ion is obtained from the
dn () = Ro@XH— (X = &/ mipl dé 3 current contribution divided by the ion velocity. The density
hex q 127> contributions of the ions born upstream are summed to ob-
{a[‘b(&) - CD(X)]J tain the ion density
where the subscriptx refers to the ions created by charge- _ ‘ RoAé
exchange collisions. The total ion densityx) is then found M%) = % K 6)
from the integral of the sum of the two differential values for ’
n: where the sum is taken over each ion born between Ognd
. and v is the velocity of theith ion evaluated ak,. The
o details of the procedure to find the velocity and the density
ni(x) = RolL * &mp)eXHL = (X ?é)\m”’]dg_ (4)  with sufficient accuracy are described in the Appendix. The
o @[d)(g) _ CD(X)]J birth of the ion can be due to ionization or a charge-exchange
m, collision. The collisions are modeled with a Monte Carlo

method.
The particle model does not require integration of the
uations of motion for the ions. It is only necessary to
evaluate the sum in Ed6). The model has the advantage
that more complicated collision models can be implemented,
g d?D(X) as long as these do not result in ions with negative velocities.
q e = ngexd qd(x)/Te] - ni(x), (5  For example, the addition of angular scattering to the colli-
sion model would allow the spread in angles of incidence to
wheren, is the plasma density at the midplane, dnds the  be determined at the wall, which is important in plasma pro-

This model is similar to the kinetic model with charge-
exchange collisions examined analytically in the quasineutraéq
region by Riemann1]. The potential profile is found by
integration of Poisson’s equation,

electron temperature in energy units. cessing applications.
Homogeneous ionization has been assumed for simplicity N )
and clarity; however, the model can be easily modified for C. Boundary conditions at the midplane

the case of ionization proportional to the local electron den- The equations are solved in a dimensionless form With
sity or to the neutral gas density. This is done by definingz)(/)\D Mo =(eoTe/Ng@®Y2, A=n/ng &)=q<l>/T T=u/c
J(x) as the integral from 0 ta of R(£)=Cn,(&n.(&), where ’ € e & >

- \1/2 - - B
ne is the electron density and C is a constant. Cs=(Te/M)™, Amip=1/Mho, Amip=Amep/Ap, ~@and Ry
=Ry\p/NgCs. The boundary conditions near the midplane are

found using a power series expansion for the potential with
B. Particle model the plasma potential set to zero

An alternate numerical model was developed in which DX) = - X2 - La¥B3 - Y(d%?)2?, (7)
individual ions are followed. In the usual particle-in-cell
code, the ion equations of motion are advanced in time an#herea, B, and y are to be determined. The coefficiesmt
Poisson’s equation is solved at each time step to update tHll be shown to be proportional to the inverse of the square
potential profile. In the problem that is addressed here, théf the length scalé; thus, the series is in powersxfL. The
ions move only in the positive direction and thus the ion solution must be symmetric about the midplane; thus, the
density atx is determined only by conditions betwerrand ~ cubic term must be interpreted as the third power of the
the midplane. In principle, the problem can be solved byabsolute value ok. _
integration along the spatial coordinate in “one pass” if both  Using only the lowest order term in the expansidr(x)
Poisson’s equation and the ions are advanced simultaneously—ax2, and Amfp— %, one finds after substituting into Eq.

in x. In practice, this approach has two problems. The first ig4) and integration that the ion density close to the midplane
that the ion density near the midplane is calculated from ds
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_ 7T~R0 Near the midplane, the ion flux is given l§§§>’( the den-
ni(0) = ? (8) sity is near unity, and thus the drift velocity must grow
vea approximately linearly witfx

For points near the origim.(X)=1 may be assumed. Using

the lowest order term for the potential in Poisson’s equation, TUX) = ~R';X (12)
d2® | R =F,~T, it is found thaffi,(0)=1+2«. From this re- (%)
lation and Eq(8). From Eqgs.(10) and(11) andﬁi('i():l,E(X) can be found and
e integrated once to obtain
~ 8«
Ro= ~—(1+2a), 9) a2
T ~ 4(ax)
X)) =-—72, (12
3TAmip\

which defines the coefficient in terms of the source raé).

The particle flux at the wall is approximately 0.50 in dimen-yhich is valid only near the midplane. This determines in the
sionless units[7]; thus, the approximate distance from the collisional limit a value for the polynomial coefficient in Eq.
midplane to the wall i&,~L/\p=0.5/Ry~ 7/\32a. This  (7)

applies only to the collisionless case. The difference between _

the electron and ion densities that drives the solution to Pois- _ 4 _ % 1
son’s equation is @ in dimensionless units. This is a small Beaic= 3n a T 327 >
quantity, of order(\p/L)? thus, great accuracy is needed in ThmipV RoAmip
evaluating the integral fom; in Eq. (4). This integral is con- The high-field drift velocity, Eq(10), is derived with the
verted to a sum over grid point intervals as described in th@issumption thaE changes negligibly in a mean free path;
Appendix. It is necessary to start the integration of Poisson’shys, Eq.(13) is expected to hold only for plasmas that have
equation many grid points from the origin in order to havemany collisions within the bulk plasma. Riemafiti used

(13

enough terms in the sum for accurate values;oAn initial-  the plasma approximatioff,(X) =exg ®(X)], with Egs.(10)

izing interval ending ak=0.13./\p is found to be the short-  anq(11) to obtain an approximate solution for the potential

est interval that consistently gives numerical stability. profile in the quasineutral region in the collisional case
The values of®(X) on the initializing interval are as-

signed using the polynomial in E¢F). The first coefficienty ~ 1 WNROZ‘)‘@

is related thQO through Eq(9). The coefficienty3 andy are oR) = Eln 1= 3mep ' (14

found by minimizing the error in Poisson’s equation. A stan-
dard numerical routine that minimizes the sum of the mearrhis function, when expanded as a polynomial, has a coeffi-
square errors is applied to Poisson’s equation on the initialcient for the cubic term that is equal B
izing interval. In the collisionless case, the error is mini-  The derivative of Eq(14) gives the electric field in the
mized with B=0 and vy=1.37%£0.03 fora values from 5 quasineutral approximation
X 10 to 5x 1078, which correspond to a range bffrom
~25 to ~2500 Debye length. This shows thathas a uni- _ 3 (W~R<2)/3mep)7(z
versal value for the collisionless case and that the profile is E(X) = (—) op— .
nearly parabolic in the initializing region. 2/ 1 = (7R3N )X
In the collisional case, the cubic term becomes larger as . i ) .
the mean free path is made shorter. The cubic dependence Ap discussed Iateﬁ the quasineutrality condition holds at least
® uponx can be seen by examining the ion mobility. Wan- to the point whereb=-0.5 for large plasmas. Thus, we may
nier [10,11 has shown that for charge-exchange collisionsuse Eq.(14) to find the poinfX, s where®=-0.5
with a constant mean free path, the ion drift velocity is given
by oo e 1 = expg=1)]
57 ~5
Ti= V2B e, (10) ™o
5 andX, s may be placed in Eq15) to obtain the electric field
where E=qE\p/T,. This result, also obtained by Smirnov at this point,
[12] and by Riemanril], is obtained simply by averaging
the drift speeds over the exponential distribution of free ~ _2.58 17

(15

13
: (16)

paths. This result applies when the energy gained between 057 %

collisions, gEA ¢, is much greater than the initial ion ther-

mal energy, which is usually the case in both the quasineutravhich is independent of the mean free path. The mobility,
regions and sheaths. lon mobilities for smaller electric field€g. (10), may then be used to find the drift velocity, and from
may be calculated using a collision frequency that is velocitthe density at this poinf (X9 =0.607, the ion flux can be
dependenfl3]. found:
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Jo.5= 0.607N2Eq shin g/ 7 = 0.772{ ~—me’] = 0.77{_?9] _ o ]
- (19 ‘—x a=5x10"
1L ]

The wall locatiorix,, is defined here as the location for which
the ion and electron fluxes are equal. The electron flux in
dimensionless units for a Maxwellian distribution is

e m = 3T a=5x107 1
Je(X) = 4/ anleexdq)&)]’ (19)

4
wherem, is the electron mass. For the collisionless case and 06 o1 02 03 04 05 06 07
in the limit of large pIasmaL/)\Dﬂoo the ion flux to the Rx

wall is J=0.487 [7]; thus, ®(X,)=-3.56 for an electron- FIG. 1. The potential profiles for the collisionless case as a
proton plasma. It is shown below that this potential becomesunction of normalized distance for a range aof values (5
more negative for collisional plasmas. X104,5X10°,5x 107 and 5 10°7). The dotted line is the po-

The energy distribution of ions reaching the wall can betential profile in the quasineutral approximation from Réi.
calculated from the relation

e

qd/T

plasma size.). Table | shows values for the distarkgethe
F(V\/)dW Ro[l +g(v\/)/)\mfp]exp[ _ §(\N)] d¢ ion flux J=RyX, the electric fieIdE~, and the ion densit,
)\mfp evaluated at the location for whieh(xX)=-0.854. This loca-

(200  tion is often taken as the sheath edge because the quasineu-

~ i ) , ~ tral solution[6] breaks down and giveB infinitely large at
whereW is the dimensionless ion energy agtV) is the i gistance. At this point, the dimensionless ion flux asymp-
inverse function toMé) =®(£) - P(x,,). This may be rewrit- totically approaches 0.487 with increasing plasma size. This
ten as value is in agreement with Harrison and Thomp$6hand
Self[7]. Table | also shows parameters evaluated at the wall,
§(VV) where the electron and ion fluxes are equalized assuming an
X electron-proton plasma. The slightly higher ion flux at the
mfp wall is due to the ion generation within the sheath region. In
-1 fluid models, the location where the fluid velocity becomes
(2)  unity is used as a definition of the presheath-sheath bound-
&W) ary. In kinetic models, the fluid velocity is not a variable;
thus, Table | does not include parameters at this location.
Examination of Fig. 1 shows that Harrison and Thomson’s
analytic solution for the quasineutral region is valid for all

A. Solutions in the collisionless case values ofL to approximately the point wheré(X)=-0.5.

The numerical model is applied to collisionless plasmasl'he values of the other parameters at this location are listed
by simply taking\¢,— 0, and in this limit the model is the in Table IIl. For plasmas with. =200 \p, J and T, have
same as that investigated by Sgff. Figure 1 is a plot of reached their asymptotic values of 0.461 and 0.607, respec-
®(X) from the midplane to the wall for a range of values of tively. The electric field decreases approximately inversely
a. The analytic quasineutral solution of Harrison andwith plasma size and approach&s 2.64Ky5 For suffi-

Thompson[6] is also plotted. The numerical solutions ap- ciently large plasmas, these values could be used to start the
proach the analytic solution with decreasing(increasing integration of Poisson’s equation, E&).

F(W) = Ry[1 +& \N)/)\mfp]exp[

x{ 4@
dé

IIl. NUMERICAL SOLUTIONS

TABLE |. Computed parameters obtained in the collisionless case.

Values atd=-0.854 Values at the wall
a 7/ \32a % 3 E i -3 % 3 E i
5x 10 24.8 25.9 0.521 0.26 0.502 3.33 30.48 0.615 1.00 0.276
5x107° 78.5 78.4 0.499 0.11 0.460 3.45 84.98 0.541 0.88 0.223
5x107° 248 244 0.491 0.062 0.442 3.52 252.8 0.509 0.82 0.200
5x1077 785 767 0.488 0.033 0.433 3.54 778.5 0.496 0.79 0.192
5x10°8 2484 2422 0.487 0.018 0.429 3.55 2436 0.490 0.78 0.189
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TABLE Il. Computed parameters for the collisionless case at the 1.0 T
distance for whichb=-0.5.
08l 1
CB=—O 5 § -\

) x  m B & % < o8 N '
5x 107 233 0470 0091 0631 214 2 oaf N 1
5X107° 72.7 0.463 0.034 0.611 2.50 o .\_
5X10° 229 0.461 0.011 0.607 2.61 021 1
5x 1077 724 0.461 0.0036 0.607 2.63 1
5% 1078 2292  0.461 00011 0607 264 0.0 0 00

Lk,
B. Solutions for finite mean free path FIG. 2. The ion flux reduction at the wall due to collisions

The collisional case is investigated in detail for a singlerelative to the collisionless case for a constant plasma kize
plasma size, 252p, that corresponds ta=5x107° in the =~ =252.8p.

collisionless case. Solutions are obtained Xgf;,=<, 200,  path is the rounding of the knee region. The values of the
100, 50, 20, 10, and 5 Debye lengths. The first of theseoefficients in the initializing region obtained from the fit-
values is to produce a collisionless case for comparison usingng routine are listed in Table Il along with the valyis, .

the collisional version of the equations. The number of meambtained from the analytic solution. There is good agreement
free paths within the plasma thus varies frer@ to 50. The at all values of the mean free path. The part of the curve in
integration is performed from the end of the initializing re- the quasineutral region is compared with the analytic solu-
gion to the pointx,, where the electron and ion fluxes are tion in Fig. 5 for the shortest mean free path investigated.
equal. The ionization rati, is adjusted, by trial and error, to The calculated potential falls slightly more rapidly than the
hold constant the plasma size. Without this adjustment, th@nalytic solution from Eq(14). The disagreement becomes
plasmas are different in extent, which makes comparisongreater in the less collisional cases with longer mean free
less direct. This procedure is analogous to an experiment ¢faths. The discrepancy is because the mobility drift speeds in
fixed size in which the ionization rate is adjusted to give athe plasma will be slightly lower than the Wannier value, Eq.
constant plasma density as the mean free path is changé¥0). which applies only to uniform electric fields. The elec-
through varying the neutral gas pressure. Table Ill shows th#ic field increases with distance and the potential drop that
calculated parameters. The value Bfat the wall is only determines the velocity is slightly less than that calculated

weakly dependent upoky, The ion flux at the wal(and from the local value of the. eIec_tric field. The electric field
thus the required ionization ratélls by nearly a factor of 4 necessary to remove the ions is thus slightly greater than
as\pp is decreased to Bp. Figure 2 shows the collisional determined by Eq9). . .
ion flux to the wall relative to the collisionless flux as a Th_e accuracy Of. the S|_mple_ analytic model for the
function of the mean free path. Figure 3 shows, from a sep guasineutral region is examlneq in Table IV. The v_alues of
rate set of calculations, that the ion flux does not change i he parameters from the nu.mencal model at the point whgre
the dimensionless plasma siz&/\p, is varied withL/\pg, ®=-0.5 are listed along with the parameters from analytic
=10. This indicates thdt/\ny, is the controlling parameter. Model, Eqs(16)«(18). As the mean free path is decreased,
The computed profiles of the potential for three differentthe values o¥, 5, Ey 5, andJ, 5 from the analytic model ap-
values of the mean free path are plotted together in Fig. 4proach to within a few percent of those from the numerical
The change in the profile caused by reducing the mean fremodel. The relative distance frokg 5 to’x,, in the collisional

TABLE Ill. Computed parameters at the wall from the collisional model. The ionization rate is adjusted
to have constant plasma sizef=252.8\p. The first value ofg is the value fitted in the initializing region
and the second value j%.,c from Eq.(13).

Amip Ry X 10° Bl Beaic Y -o J E T

0 2.01 0/0 1.37 3.52 0.509 0.82 0.200
200 1.74 0.95/1.10 1.69 3.66 0.439 0.78 0.177
100 1.55 2.46/2.46 1.90 3.77 0.393 0.76 0.163
50 1.32 5.83/5.81 2.00 3.94 0.333 0.73 0.145
20 0.973 19.6/19.6 3.17 4.24 0.246 0.71 0.122
10 0.737 51.5/51.8 8.03 4.52 0.186 0.70 0.109
5 0.543 140.1/140.8 10.1 4.83 0.137 0.70 0.101

026408-5



STERNOVSKY, DOWNUM, AND ROBERTSON PHYSICAL REVIEW EO, 026408(2004)

1.0 T — T 0.0 — T
N
08 1 01} N\ -
\3
> \Y
S 06} - 02} \\ 4
5 . =° \‘
2 oaf ] g o3} -
© \l
T’ \
o \
02} - 0.4} \\ 4
A}
\
1 1 " _05 L L. 1 A
0'010 100 1000 0 50 100 150 200
L/, X/

FIG. 3. The ion flux at the wall relative to the collisionless flux ~ FIG- 5. The potential profile for the quasineutral region for the
for constantL/\p¢,=10. collisional case\mp=5 (solid line) and the analytic solution, Eq.
(14) (dashed ling
case is plotted in Fig. 6 for a range of valuesXyf This
distance may be used to calculate the additional cufignt model runs approximately a factor of 16 more quickly, re-
~%,JR, generated betweeR,s and X,. Examination of duiring minutes rather than hours to complete the calculation
Table IV shows that this distance is a weak function of the® @n ordinary personal computer. _ _
mean free path. Figure 8 is a logarithmic plot of the potential as a function
The energy distribution of ions hitting the wall is plotted of distance. This plot shows clearly the expected parabolic

- e . dependence of the potential profile in the collisionless limit.
n Flg' .7(A)' The energy distribution is pea.ked.mw) n In the collisional limit, the sheath profile has approximately
the limit of long mean free path. The distribution becomesy expected cubic dependence except near the midplane,

¢ of th rential d thin about 40 Deb S*here the profile is between parabolic and cubic. This is a
part of the potential drop occurs within abou e yeconsequence of the drift velocity not being correctly de-

lengths of the wall; thus, the majority of ions will have fallen scribed by the high field mobility, Eq.0), for distances

through a potential near to the wall pot_ential unless the Me3aRom the midplane that are not large in comparison with the
free path is shorter thar-40 \p. In this case the highest

; >~ _mean free path. Note that the electric field value in the col-
energy ions are so strongly attenuated that they are mlssn]%. L= . - .
from the distribution. ional limit, Ey5=2.58/&,5 is not significantly different

Energy distributions were also obtained using the particldrom that in the collisionless limitEg 5=2.64 K, 5.
model described in Sec. Il B. The distribution for the case

Amtp=10 is plotted in Fig. @) along with the result from the IV. SUMMARY AND CONCLUSION
kinetic model. The two distributions are in close agreement. . . L
In the particle model, % 10* particles(grid spacing 0.00p Numerical solutions to a kinetic model for the plasma-

are required to reduce the fluctuations in ion density to @"€ath problem have been obtained for both collisional and
sufficiently low level for numerical stability. The kinetic collisionless plasmas. Numerical difficulties at the midplane

model requires a grid spacing of 0.02. Thus, the kinetic2® removed by having a short initializing region in which

" ) T ! ! TABLE IV. Comparison of parameters dt=-0.5 from the nu-
0 i merical model to the parameters calculated from the analytic model,
Eqgs.(16)—(18) for the collisional case. The value from the analytic
1 1 model is given first and the value from numerical model is given
second. The values converge as the mean free path is made shorter.
2 100 ! .
= 2F 10 1 The first two columns are the input values for the two models.
=]
o 3t 1 Input parameters Analytic value/value from the model
4l ] }\mfp ﬁOX 10’3 3‘(0,5 EO.S 30.5
200 1.74 342/225  0.0075/0.011  0.595/0.391
-50 50 700 150 200 250 100 1.55 293/222  0.0088/0.011  0.454/0.346
X/, 50 1.32 259/220 0.010/0.012 0.342/0.289
20 0.973 234/217 0.011/0.012 0.227/0.210
FIG. 4. The potential profile with mean free paths of N9 10 0.737 223/215 0.012/0.012 0.165/0.158
100\p, and infinity. The ionization rates are adjusted to have a g 0.543 217/213  0.012/0.012 0.118/0.115

plasma extent of 252.8p.
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FIG. 6. A plot of the relative distandg,,—X%g 5) /X,, as a function
of %, for different plasma sizes and constant collisionality mr,
=10. This shows that the fraction of the discharge that is no
quasineutral becomes smaller as the plasma is made larger.

FIG. 8. Logarithmic plot of the potential as a function of dis-
fance. Within the quasineutral region, the dependence changes from
parabolic in the collisionless case to nearly cubic in the case of
short mean free path. The dependence within about a mean free

. o . ) . path of the origin shows less change. The slope for infinite mean
the potential profile is approximated by a polynomial With free path is very nearly 2.0 in the quasineutral region. A slope of 3.0
coefficients chosen to minimize the error in Poisson’s equayg plotted for comparison with the collisional case.

tion. The solutions for the quasineutral region in the colli-
sionless case agree with the quasineutral analytic solution cf—f|arrison and Thomsoii6] except for the smallest plasma

sizes studied. The calculated valuesTigrd, andE are very
near to their values from the quasineutral model to the dis-

tance for which®=-0.5.

The effect of collisions on the potential profile is to round
off the knee in the potential profile. The calculated potential
profiles in the quasineutral region fall slightly more rapidly
with distance than Riemann’s analytic solutif] for this
region. The ion flux at the wall is reduced, which requires a
more negative wall potential to equalize the electron and ion
fluxes. The smaller ion flux also results in a lower ionization
rate being required for a given plasma density. The flux is
reduced by approximately a factor of 2 when there are 10
mean free paths from the plasma midplane to the wall. The
electric field and the flux from the midplane to the point

A where®=-0.5 can be calculated from simple formulas that

. ’ y r become accurate to a few percent in the limit of 50 or more
- mean free paths in the plasma. In the collisionless case, the
energy distribution of ions at the wall is peaked at the energy
. corresponding to the wall potential. As the mean free path
becomes shorter, these highest energy ions from near the
. midplane are removed from the distribution and the peak is
shifted to lower energy.

10° Y Y T Y
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APPENDIX: NUMERICAL TECHNIQUES

®) The expression for the ion density, Ed), involves an
FIG. 7. (A) The energy distribution of ions hitting the wall for integral with a singularity that must be handled carefully.
different mean free paths. The area of the curves are normalized thhe integral is evaluated for the short intervals between grid-
unity. (B) Comparison of the energy distribution from the kinetic points, and these values are summed from the midplare to
model (dashed ling to the energy distribution from the particle For the interval between adjacent grid poirtsand b, an
model(solid line). approximate analytic expression is used
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f’ S® . H@+bre] fb db9
a \2[DB(8) - DR V2 Ja [@(9 - DR V2 dd(E)

= & & 12 _ 1 e 1/ dd (&) -
=29 (a+b)/2){[P(b) - D)2~ [D(a) - D(X)]"?} d , (A1)
&=(a+b)/2

which removes the singularity, where Poisson’s equation is integrated using the second-order

~ ~ - - relation[14]

= Ro(1 + &Ny, = (%= O/N\midl, A2 - .~ 5 -
R B (%ys1) = 20 () = D) = (AR TF K ~Fel%0]-
and é=(a+b)/2. Thus,S(¢) is evaluated at the midpoint of (Ad)

the interval. BothS(¢) and d®/d¢ are assumed to change rAvery small step sizes<0.05, is necessary to avoid numeri-

negligibly on the interval and are taken through the integral,, jqiahjlity with either this second-order method or with

_sign. This assumptio_n requiréb—a)/)\mfp<1, which Is sat- fourth-order Runge-Kutta. The small step size makes the
isfied by the small grid spacing. The integral over the whole

d inis obtained b ing the riaht-hand side f second-order method sufficiently accurate. If fourth-order
omain is obtained by summing the right-hand side for eaCI??unge-Kutta is used, there is a need to evaluate the integral
pair of adjacent grid points, with the approximation

for nj(x) within the derivatives subroutine ankk takes on
dd(é) _ ®(b) - B(a) half the usual value in two of the four evaluations of the
e =" a (A3)  derivative. The fourth-order method is thus more compli-

& |y a cated and does not offer an advantage in step size because

This is, in effect, the value of the derivative at the midpoint.tiS is limited by numerical stability. The fourth-order
The accuracy of EqALl) was examined by using a fourth- method was implemented for a few cases, and the values

. ~ . . found forx, (for examplé differed by only a few percent
order polynomial forb(X) and comparing the numerical re- from valuei,%v <()btained ffoer)n the secozd-oré/er meth%d.
sult for the integral with a more precise result obtained with

' . - For the particle model, sufficient accuracy for the density
a finer grid. The error was found to be less than of ordef 10 requires that the ions be given an average velocity calculated

with 100 grid points on the interval. A high level of accuracy ¢, 'the region between the gridpoint at the birth location and
is needed because the integration of Poisson’s equation d?ﬁe next grid point. The average defined by

pends upon the small difference between the electron and ion
densities which is of ordei\p/L)%. The accuracy is insuffi- 21 \/@ \/@

cient if the number of terms in the sum is too small. An Uik~ 5 m [P0) — P(x)] + m [P0642) = PO |
initializing interval of 0.15L was found to give a sufficiently (A5)
large number of terms. The sum over previous points results
in the computation time scaling as the square of the numbegives a value for density contribution that is sufficiently ac-

of grid points. curate.
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