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A kinetic model of the plasma-sheath problem is presented that includes the effects of charge-exchange
collisions of the ion. The collisions are modeled as a sink for accelerated ions and as a source of cold ions.
Solutions are obtained by numerical integration of Poisson’s equation from a point near the plasma midplane
to the wall. In the quasineutral region, these solutions agree with earlier analytic work. As the mean free path
is decreased, the current density at the wall decreases and the potential profile in the quasineutral region shows
a smooth transition from a parabolic profile to a nearly cubic profile determined by the ion mobility. An
approximate expression is found for the ion flux to the wall in the collisional limit.
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I. INTRODUCTION

In many laboratory plasmas the shortest mean free path is
the one for charge exchange collisions of ions. This mean
free path is often smaller than the dimensions of the plasma
but greater than the dimensions of the sheath. In this case the
bulk of the plasma should be modeled by equations that in-
clude the effects of collisions. Riemann[1] added charge-
exchange collisions to the kinetic model of Tonks and Lang-
muir [2] and obtained an analytic solution for the
quasineutral region. Riemann has also discussed in some de-
tail the effects of ion collisions on fluid models of the sheath
region [3]. Monte Carlo collisions of ions have been imple-
mented in particle-in-cell codes[4], and these have been
used to obtain the distribution function of ions hitting the
wall [5]. For collisionless plasmas, Harrison and Thomson
[6] obtained an analytic solution to the kinetic model valid in
the quasineutral region. Self[7] obtained numerical solutions
for the collisionless case valid from the midplane to the wall.

In this work, the kinetic model[2] is modified to include
charge-exchange collisions. The numerical solutions pre-
sented here extend the collisional solution obtained by Rie-
mann[1] from the quasineutral region to the wall for the case
of a homogeneous source of ionization. The collisions are
found to reduce the current density at the wall to a value
significantly below the usual ion saturation current. Solutions
are also found for the energy distribution of ions hitting the
wall. This distribution is important in plasma processing ap-
plications[5] and in determining plasma-wall interactions in
fusion devices[8,9].

In Sec. II we present a kinetic model with two source
terms for ions. The first term describes homogeneous genera-
tion of cold ions that could occur from energetic electrons.
The flux of these ions is attenuated with distance as a result
of collisions characterized by a constant mean free path.
There is a second source term for cold ions that is equal to
the rate of loss of ions to these collisions. At each location
the ion density is found by integration of the upstream
sources. The electron density is modeled by the Boltzmann
relation. An alternate version of the model in which indi-
vidual ions are followed is presented briefly. A set of dimen-

sionless units is introduced and the boundary conditions at
the midplane are derived. In Sec. III, Poisson’s equation is
numerically integrated from a point near the midplane to the
wall. Solutions are obtained for a range of mean free paths
that is longer and shorter than the dimensions of the plasma.
In the limit of short mean free path, the solutions in the
quasineutral region are shown to agree with a collisional
model based upon ion mobility. Section IV is a summary and
conclusion.

II. MODELS

A homogeneous source of ionizationR0 is assumed in a
region from −L to +L. The continuity equation then requires
that the particle flux of ions toward the wall beJnetsxd=R0x,
where x is measured from the midplane. The charge-
exchange collisions of ions with cold neutrals are assumed to
be characterized by a constant cross section and thus a con-
stant mean free pathlmfp=1/nns, wherenn is the neutral
density ands is the collision cross section. The model makes
use of the fact that these collisions do not change the value
of Jnet. The ions created by impact ionization or by charge
exchange are assumed to be born at rest. This approximation
is valid for most laboratory plasmas because the initial ion
energy is much less than the potential through which they are
subsequently accelerated.

A. Kinetic model

The differential contributiondJ0sx,jd to the particle flux
at x from particles created atj by ionization is

dJ0sx,jd = R0expf− sx − jd/lmfpgdj, s1d

wherex.j is assumed. The contribution of these ions to the
density atx is found by dividing their current contribution by
their velocityvsx,jd determined from energy conservation to
obtain
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dni,0sxd =
dJ0sx,jd
vsx,jd

=
R0expf− sx − jd/lmfpg

F2q

mi
fFsjd − FsxdgG1/2dj, s2d

whereq is the elementary charge,mi is the ion mass,Fsxd is
the space potential, and the subscript zero refers to ions cre-
ated by impact ionization of neutrals.

Those ions lost in charge-exchange collisions create an
equal number of new ions beginning at zero velocity. Thus,
there is a second source term,Rcx, that is equal to the number
of charge-exchange collisions per unit volume. The net flux
passing through a distancedj creates collisions at the rate
Rcx=Jnet/lmfp=R0j /lmfp. These contribute a second term to
the density atx

dni,cxsxd =
Rcxexpf− sx − jd/lmfpg

F2q

mi
fFsjd − FsxdgG1/2dj, s3d

where the subscriptcx refers to the ions created by charge-
exchange collisions. The total ion densitynisxd is then found
from the integral of the sum of the two differential values for
ni:

nisxd =E
0

x

R0s1 + j/lmfpdexpf− sx − jd/lmfpg

F2q

mi
fFsjd − FsxdgG1/2 dj. s4d

This model is similar to the kinetic model with charge-
exchange collisions examined analytically in the quasineutral
region by Riemann[1]. The potential profile is found by
integration of Poisson’s equation,

«0

q

d2Fsxd
dx2 = n0expfqFsxd/Teg − nisxd, s5d

wheren0 is the plasma density at the midplane, andTe is the
electron temperature in energy units.

Homogeneous ionization has been assumed for simplicity
and clarity; however, the model can be easily modified for
the case of ionization proportional to the local electron den-
sity or to the neutral gas density. This is done by defining
Jsxd as the integral from 0 tox of Rsjd=Cnnsjdnesjd, where
ne is the electron density and C is a constant.

B. Particle model

An alternate numerical model was developed in which
individual ions are followed. In the usual particle-in-cell
code, the ion equations of motion are advanced in time and
Poisson’s equation is solved at each time step to update the
potential profile. In the problem that is addressed here, the
ions move only in the positivex direction and thus the ion
density atx is determined only by conditions betweenx and
the midplane. In principle, the problem can be solved by
integration along the spatial coordinate in “one pass” if both
Poisson’s equation and the ions are advanced simultaneously
in x. In practice, this approach has two problems. The first is
that the ion density near the midplane is calculated from a

small subset of particles; thus, fluctuations are relatively
large. The effect of the fluctuations is reduced by finding the
polynomial expression forFsxd that gives the least error in
Poisson’s equation in an initializing region near the mid-
plane. In addition, the charge density fluctuations are reduced
by having the ions created uniformly in space rather than at
random locations. The second problem is that each particle
moves to each downstream grid point; thus, the ion number
density is not simply related to the density of ion locations.
This problem is solved by finding the density with the same
method that is used in the kinetic model.

One computational ion is generated per grid point and the
flux associated with each ion isR0Dj, whereDj is the grid
spacing chosen to be much smaller than the Debye length
lD. The density associated with this ion is obtained from the
current contribution divided by the ion velocity. The density
contributions of the ions born upstream are summed to ob-
tain the ion density

nisxkd = o
i=0

k
R0Dj

vi,k
, s6d

where the sum is taken over each ion born between 0 andxk,
and vi,k is the velocity of theith ion evaluated atxk. The
details of the procedure to find the velocity and the density
with sufficient accuracy are described in the Appendix. The
birth of the ion can be due to ionization or a charge-exchange
collision. The collisions are modeled with a Monte Carlo
method.

The particle model does not require integration of the
equations of motion for the ions. It is only necessary to
evaluate the sum in Eq.(6). The model has the advantage
that more complicated collision models can be implemented,
as long as these do not result in ions with negative velocities.
For example, the addition of angular scattering to the colli-
sion model would allow the spread in angles of incidence to
be determined at the wall, which is important in plasma pro-
cessing applications.

C. Boundary conditions at the midplane

The equations are solved in a dimensionless form withx̃

=x/lD, lD=s«0Te/n0q
2d1/2, ñ=n/n0, F̃=qF /Te, ũ=u/cs,

cs=sTe/mid1/2, lmfp=1/nns, l̃mfp=lmfp/lD, and R̃0

=R0lD /n0cs. The boundary conditions near the midplane are
found using a power series expansion for the potential with
the plasma potential set to zero

F̃sx̃d > − ax̃2 − ba3/2x̃3 − gsax̃2d2, s7d

wherea, b, and g are to be determined. The coefficienta
will be shown to be proportional to the inverse of the square
of the length scaleL; thus, the series is in powers ofx/L. The
solution must be symmetric about the midplane; thus, the
cubic term must be interpreted as the third power of the
absolute value ofx.

Using only the lowest order term in the expansion,F̃sx̃d
>−ax̃2, and lmfp→`, one finds after substituting into Eq.
(4) and integration that the ion density close to the midplane
is
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ñis0d >
pR̃0

Î8a
. s8d

For points near the origin,ñesx̃d=1 may be assumed. Using
the lowest order term for the potential in Poisson’s equation,

d2F̃ /dx̃2= ñe− ñi, it is found thatñis0d=1+2a. From this re-
lation and Eq.(8).

R̃0 =
Î8a

p
s1 + 2ad, s9d

which defines the coefficienta in terms of the source rateR̃0.
The particle flux at the wall is approximately 0.50 in dimen-
sionless units,[7]; thus, the approximate distance from the

midplane to the wall isx̃w<L /lD<0.5/R̃0<p /Î32a. This
applies only to the collisionless case. The difference between
the electron and ion densities that drives the solution to Pois-
son’s equation is 2a in dimensionless units. This is a small
quantity, of orderslD /Ld2; thus, great accuracy is needed in
evaluating the integral forni in Eq. (4). This integral is con-
verted to a sum over grid point intervals as described in the
Appendix. It is necessary to start the integration of Poisson’s
equation many grid points from the origin in order to have
enough terms in the sum for accurate values ofni. An initial-
izing interval ending atx̃=0.15L /lD is found to be the short-
est interval that consistently gives numerical stability.

The values ofF̃sx̃d on the initializing interval are as-
signed using the polynomial in Eq.(7). The first coefficienta

is related toR̃0 through Eq.(9). The coefficientsb andg are
found by minimizing the error in Poisson’s equation. A stan-
dard numerical routine that minimizes the sum of the mean
square errors is applied to Poisson’s equation on the initial-
izing interval. In the collisionless case, the error is mini-
mized with b=0 and g=1.37±0.03 fora values from 5
310−4 to 5310−8, which correspond to a range ofL from
,25 to ,2500 Debye length. This shows thatg has a uni-
versal value for the collisionless case and that the profile is
nearly parabolic in the initializing region.

In the collisional case, the cubic term becomes larger as
the mean free path is made shorter. The cubic dependence of
F uponx can be seen by examining the ion mobility. Wan-
nier [10,11] has shown that for charge-exchange collisions
with a constant mean free path, the ion drift velocity is given
by

ũ = Î2Ẽl̃mfp/p, s10d

where Ẽ=qElD /Te. This result, also obtained by Smirnov
[12] and by Riemann[1], is obtained simply by averaging
the drift speeds over the exponential distribution of free
paths. This result applies when the energy gained between
collisions,qElmfp, is much greater than the initial ion ther-
mal energy, which is usually the case in both the quasineutral
regions and sheaths. Ion mobilities for smaller electric fields
may be calculated using a collision frequency that is velocity
dependent[13].

Near the midplane, the ion flux is given byR̃0x̃, the den-
sity is near unity, and thus the drift velocityũ must grow
approximately linearly withx̃

ũsx̃d >
R̃0x̃

ñisx̃d
. s11d

From Eqs.(10) and(11) andñisx̃d=1, Ẽsx̃d can be found and
integrated once to obtain

F̃sx̃d = −
4sax̃2d3/2

3pl̃mfp
Îa

, s12d

which is valid only near the midplane. This determines in the
collisional limit a value for the polynomial coefficient in Eq.
(7)

bcalc =
4

3pl̃mfp
Îa

=
8Î2

3p2

1

R̃0l̃mfp

. s13d

The high-field drift velocity, Eq.(10), is derived with the
assumption thatE changes negligibly in a mean free path;
thus, Eq.(13) is expected to hold only for plasmas that have
many collisions within the bulk plasma. Riemann[1] used
the plasma approximation,ñisx̃d=expfFsx̃dg, with Eqs.(10)
and (11) to obtain an approximate solution for the potential
profile in the quasineutral region in the collisional case

F̃sx̃d >
1

2
lnF1 −

pR̃0
2x̃3

3l̃mfp

G . s14d

This function, when expanded as a polynomial, has a coeffi-
cient for the cubic term that is equal tobcalc.

The derivative of Eq.(14) gives the electric field in the
quasineutral approximation

Ẽsx̃d > S3

2
D spR̃0

2/3l̃mfpdx̃2

1 − spR̃0
2/3l̃mfpdx̃3

. s15d

As discussed later, the quasineutrality condition holds at least

to the point whereF̃=−0.5 for large plasmas. Thus, we may

use Eq.(14) to find the pointx̃0.5 whereF̃=−0.5

x̃0.5=H3l̃mfpf1 − exps− 1dg

pR̃0
2 J1/3

, s16d

andx̃0.5 may be placed in Eq.(15) to obtain the electric field
at this point,

Ẽ0.5=
2.58

x̃0.5

, s17d

which is independent of the mean free path. The mobility,
Eq. (10), may then be used to find the drift velocity, and from
the density at this point,ñisx̃0.5d=0.607, the ion flux can be
found:
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J̃0.5= 0.607Î2Ẽ0.5l̃mfp/p > 0.778F l̃mfp

x̃0.5
G > 0.778Flmfp

L
G .

s18d

The wall locationx̃w is defined here as the location for which
the ion and electron fluxes are equal. The electron flux in
dimensionless units for a Maxwellian distribution is

J̃esx̃d =Î mi

2pme
expfF̃sx̃dg, s19d

whereme is the electron mass. For the collisionless case and
in the limit of large plasma,L /lD→`, the ion flux to the

wall is J̃=0.487 [7]; thus, F̃sx̃wd=−3.56 for an electron-
proton plasma. It is shown below that this potential becomes
more negative for collisional plasmas.

The energy distribution of ions reaching the wall can be
calculated from the relation

FsW̃ddW̃= R̃0f1 + jsW̃d/l̃mfpgexpF−
x̃w − jsW̃d

l̃mfp

Gdj,

s20d

where W̃ is the dimensionless ion energy andjsW̃d is the

inverse function toW̃sjd=F̃sjd−F̃sx̃wd. This may be rewrit-
ten as

FsW̃d = R̃0f1 + jsW̃d/l̃mfpgexpF−
x̃w − jsW̃d

l̃mfp

G
3FUdF̃sjd

dj
U

jsW̃d
G−1

. s21d

III. NUMERICAL SOLUTIONS

A. Solutions in the collisionless case

The numerical model is applied to collisionless plasmas
by simply takinglmfp→`, and in this limit the model is the
same as that investigated by Self[7]. Figure 1 is a plot of

F̃sx̃d from the midplane to the wall for a range of values of
a. The analytic quasineutral solution of Harrison and
Thompson[6] is also plotted. The numerical solutions ap-
proach the analytic solution with decreasinga (increasing

plasma sizeL). Table I shows values for the distancex̃, the

ion flux J̃=R̃0x̃, the electric fieldẼ, and the ion densityñi

evaluated at the location for whichF̃sx̃d=−0.854. This loca-
tion is often taken as the sheath edge because the quasineu-

tral solution[6] breaks down and givesẼ infinitely large at
this distance. At this point, the dimensionless ion flux asymp-
totically approaches 0.487 with increasing plasma size. This
value is in agreement with Harrison and Thompson[6] and
Self [7]. Table I also shows parameters evaluated at the wall,
where the electron and ion fluxes are equalized assuming an
electron-proton plasma. The slightly higher ion flux at the
wall is due to the ion generation within the sheath region. In
fluid models, the location where the fluid velocity becomes
unity is used as a definition of the presheath-sheath bound-
ary. In kinetic models, the fluid velocity is not a variable;
thus, Table I does not include parameters at this location.

Examination of Fig. 1 shows that Harrison and Thomson’s
analytic solution for the quasineutral region is valid for all

values ofL to approximately the point whereF̃sx̃d=−0.5.
The values of the other parameters at this location are listed

in Table II. For plasmas withLù200 lD, J̃ and ñi have
reached their asymptotic values of 0.461 and 0.607, respec-
tively. The electric field decreases approximately inversely

with plasma size and approachesẼ=2.64/x̃0.5. For suffi-
ciently large plasmas, these values could be used to start the
integration of Poisson’s equation, Eq.(5).

TABLE I. Computed parameters obtained in the collisionless case.

Values atF̃=−0.854 Values at the wall

a p/Î32a x̃ J̃ Ẽ ñ −F̃ x̃ J̃ Ẽ ñi

5310−4 24.8 25.9 0.521 0.26 0.502 3.33 30.48 0.615 1.00 0.276

5310−5 78.5 78.4 0.499 0.11 0.460 3.45 84.98 0.541 0.88 0.223

5310−6 248 244 0.491 0.062 0.442 3.52 252.8 0.509 0.82 0.200

5310−7 785 767 0.488 0.033 0.433 3.54 778.5 0.496 0.79 0.192

5310−8 2484 2422 0.487 0.018 0.429 3.55 2436 0.490 0.78 0.189

FIG. 1. The potential profiles for the collisionless case as a
function of normalized distance for a range ofa values (5
310−4,5310−5,5310−6, and 5310−7). The dotted line is the po-
tential profile in the quasineutral approximation from Ref.[6].
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B. Solutions for finite mean free path

The collisional case is investigated in detail for a single
plasma size, 252lD, that corresponds toa=5310−6 in the

collisionless case. Solutions are obtained forl̃mfp=`, 200,
100, 50, 20, 10, and 5 Debye lengths. The first of these
values is to produce a collisionless case for comparison using
the collisional version of the equations. The number of mean
free paths within the plasma thus varies from,0 to 50. The
integration is performed from the end of the initializing re-
gion to the pointx̃w, where the electron and ion fluxes are

equal. The ionization rateR̃0 is adjusted, by trial and error, to
hold constant the plasma size. Without this adjustment, the
plasmas are different in extent, which makes comparisons
less direct. This procedure is analogous to an experiment of
fixed size in which the ionization rate is adjusted to give a
constant plasma density as the mean free path is changed
through varying the neutral gas pressure. Table III shows the

calculated parameters. The value ofẼ at the wall is only
weakly dependent uponlmfp. The ion flux at the wall(and
thus the required ionization rate) falls by nearly a factor of 4
aslmfp is decreased to 5lD. Figure 2 shows the collisional
ion flux to the wall relative to the collisionless flux as a
function of the mean free path. Figure 3 shows, from a sepa-
rate set of calculations, that the ion flux does not change if
the dimensionless plasma size,L /lD, is varied withL /lmfp
=10. This indicates thatL /lmfp is the controlling parameter.

The computed profiles of the potential for three different
values of the mean free path are plotted together in Fig. 4.
The change in the profile caused by reducing the mean free

path is the rounding of the knee region. The values of the
coefficientb in the initializing region obtained from the fit-
ting routine are listed in Table III along with the valuebcalc
obtained from the analytic solution. There is good agreement
at all values of the mean free path. The part of the curve in
the quasineutral region is compared with the analytic solu-
tion in Fig. 5 for the shortest mean free path investigated.
The calculated potential falls slightly more rapidly than the
analytic solution from Eq.(14). The disagreement becomes
greater in the less collisional cases with longer mean free
paths. The discrepancy is because the mobility drift speeds in
the plasma will be slightly lower than the Wannier value, Eq.
(10), which applies only to uniform electric fields. The elec-
tric field increases with distance and the potential drop that
determines the velocity is slightly less than that calculated
from the local value of the electric field. The electric field
necessary to remove the ions is thus slightly greater than
determined by Eq.(9).

The accuracy of the simple analytic model for the
quasineutral region is examined in Table IV. The values of
the parameters from the numerical model at the point where

F̃=−0.5 are listed along with the parameters from analytic
model, Eqs.(16)–(18). As the mean free path is decreased,

the values ofx̃0.5, Ẽ0.5, and J̃0.5 from the analytic model ap-
proach to within a few percent of those from the numerical
model. The relative distance fromx̃0.5 to x̃w in the collisional

TABLE II. Computed parameters for the collisionless case at the

distance for whichF̃=−0.5.

F̃=−0.5

a x̃ J̃=R̃x̃ Ẽ ñi x̃Ẽ

5310−4 23.3 0.470 0.091 0.631 2.14

5310−5 72.7 0.463 0.034 0.611 2.50

5310−6 229 0.461 0.011 0.607 2.61

5310−7 724 0.461 0.0036 0.607 2.63

5310−8 2292 0.461 0.0011 0.607 2.64

TABLE III. Computed parameters at the wall from the collisional model. The ionization rate is adjusted
to have constant plasma size ofx̃w=252.8lD. The first value ofb is the value fitted in the initializing region
and the second value isbcalc from Eq. (13).

lmfp R̃03103 b /bcalc g −F̃ J̃ Ẽ ñi

` 2.01 0/0 1.37 3.52 0.509 0.82 0.200

200 1.74 0.95/1.10 1.69 3.66 0.439 0.78 0.177

100 1.55 2.46/2.46 1.90 3.77 0.393 0.76 0.163

50 1.32 5.83/5.81 2.00 3.94 0.333 0.73 0.145

20 0.973 19.6/19.6 3.17 4.24 0.246 0.71 0.122

10 0.737 51.5/51.8 8.03 4.52 0.186 0.70 0.109

5 0.543 140.1/140.8 10.1 4.83 0.137 0.70 0.101

FIG. 2. The ion flux reduction at the wall due to collisions
relative to the collisionless case for a constant plasma sizeL
=252.8lD.
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case is plotted in Fig. 6 for a range of values ofx̃w. This
distance may be used to calculate the additional currentsx̃w

− x̃0.5dR̃0 generated betweenx̃0.5 and x̃w. Examination of
Table IV shows that this distance is a weak function of the
mean free path.

The energy distribution of ions hitting the wall is plotted

in Fig. 7(A). The energy distribution is peaked atF̃sx̃wd in
the limit of long mean free path. The distribution becomes
more uniform as the mean free path is reduced. The greatest
part of the potential drop occurs within about 40 Debye
lengths of the wall; thus, the majority of ions will have fallen
through a potential near to the wall potential unless the mean
free path is shorter than,40 lD. In this case the highest
energy ions are so strongly attenuated that they are missing
from the distribution.

Energy distributions were also obtained using the particle
model described in Sec. II B. The distribution for the case

l̃mfp=10 is plotted in Fig. 7(B) along with the result from the
kinetic model. The two distributions are in close agreement.
In the particle model, 53104 particles(grid spacing 0.005)
are required to reduce the fluctuations in ion density to a
sufficiently low level for numerical stability. The kinetic
model requires a grid spacing of 0.02. Thus, the kinetic

model runs approximately a factor of 16 more quickly, re-
quiring minutes rather than hours to complete the calculation
on an ordinary personal computer.

Figure 8 is a logarithmic plot of the potential as a function
of distance. This plot shows clearly the expected parabolic
dependence of the potential profile in the collisionless limit.
In the collisional limit, the sheath profile has approximately
the expected cubic dependence except near the midplane,
where the profile is between parabolic and cubic. This is a
consequence of the drift velocity not being correctly de-
scribed by the high field mobility, Eq.(10), for distances
from the midplane that are not large in comparison with the
mean free path. Note that the electric field value in the col-

lisional limit, Ẽ0.5=2.58/x̃0.5, is not significantly different

from that in the collisionless limit,Ẽ0.5=2.64/x̃0.5.

IV. SUMMARY AND CONCLUSION

Numerical solutions to a kinetic model for the plasma-
sheath problem have been obtained for both collisional and
collisionless plasmas. Numerical difficulties at the midplane
are removed by having a short initializing region in which

TABLE IV. Comparison of parameters atF̃=−0.5 from the nu-
merical model to the parameters calculated from the analytic model,
Eqs.(16)–(18) for the collisional case. The value from the analytic
model is given first and the value from numerical model is given
second. The values converge as the mean free path is made shorter.
The first two columns are the input values for the two models.

Input parameters Analytic value/value from the model

lmfp R̃03103 x̃0.5 Ẽ0.5 J̃0.5

200 1.74 342/225 0.0075/0.011 0.595/0.391

100 1.55 293/222 0.0088/0.011 0.454/0.346

50 1.32 259/220 0.010/0.012 0.342/0.289

20 0.973 234/217 0.011/0.012 0.227/0.210

10 0.737 223/215 0.012/0.012 0.165/0.158

5 0.543 217/213 0.012/0.012 0.118/0.115

FIG. 4. The potential profile with mean free paths of 10lD,
100 lD, and infinity. The ionization rates are adjusted to have a
plasma extent of 252.8lD.

FIG. 5. The potential profile for the quasineutral region for the

collisional casel̃mfp=5 (solid line) and the analytic solution, Eq.
(14) (dashed line).

FIG. 3. The ion flux at the wall relative to the collisionless flux
for constantL /lmfp=10.
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the potential profile is approximated by a polynomial with
coefficients chosen to minimize the error in Poisson’s equa-
tion. The solutions for the quasineutral region in the colli-
sionless case agree with the quasineutral analytic solution of

Harrison and Thomson[6] except for the smallest plasma

sizes studied. The calculated values forñi, J̃, andẼ are very
near to their values from the quasineutral model to the dis-

tance for whichF̃=−0.5.
The effect of collisions on the potential profile is to round

off the knee in the potential profile. The calculated potential
profiles in the quasineutral region fall slightly more rapidly
with distance than Riemann’s analytic solution[3] for this
region. The ion flux at the wall is reduced, which requires a
more negative wall potential to equalize the electron and ion
fluxes. The smaller ion flux also results in a lower ionization
rate being required for a given plasma density. The flux is
reduced by approximately a factor of 2 when there are 10
mean free paths from the plasma midplane to the wall. The
electric field and the flux from the midplane to the point

whereF̃=−0.5 can be calculated from simple formulas that
become accurate to a few percent in the limit of 50 or more
mean free paths in the plasma. In the collisionless case, the
energy distribution of ions at the wall is peaked at the energy
corresponding to the wall potential. As the mean free path
becomes shorter, these highest energy ions from near the
midplane are removed from the distribution and the peak is
shifted to lower energy.
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APPENDIX: NUMERICAL TECHNIQUES

The expression for the ion density, Eq.(4), involves an
integral with a singularity that must be handled carefully.
The integral is evaluated for the short intervals between grid-
points, and these values are summed from the midplane tox.
For the interval between adjacent grid pointsa and b, an
approximate analytic expression is used

FIG. 6. A plot of the relative distancesx̃w− x̃0.5d / x̃w as a function
of x̃w for different plasma sizes and constant collisionality,L /lmfp

=10. This shows that the fraction of the discharge that is not
quasineutral becomes smaller as the plasma is made larger.

FIG. 7. (A) The energy distribution of ions hitting the wall for
different mean free paths. The area of the curves are normalized to
unity. (B) Comparison of the energy distribution from the kinetic
model (dashed line) to the energy distribution from the particle
model (solid line).

FIG. 8. Logarithmic plot of the potential as a function of dis-
tance. Within the quasineutral region, the dependence changes from
parabolic in the collisionless case to nearly cubic in the case of
short mean free path. The dependence within about a mean free
path of the origin shows less change. The slope for infinite mean
free path is very nearly 2.0 in the quasineutral region. A slope of 3.0
is plotted for comparison with the collisional case.
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which removes the singularity, where

S̃sjd = R̃0s1 + j/l̃mfpdexpf− sx̃ − jd/l̃mfpg, sA2d

and j=sa+bd /2. Thus,S̃sjd is evaluated at the midpoint of

the interval. BothS̃sjd and dF̃ /dj are assumed to change
negligibly on the interval and are taken through the integral
sign. This assumption requiressb-ad /lmfp!1, which is sat-
isfied by the small grid spacing. The integral over the whole
domain is obtained by summing the right-hand side for each
pair of adjacent grid points, with the approximation

UdFsjd
dj

U
j=sa+bd/2

>
Fsbd − Fsad

b − a
. sA3d

This is, in effect, the value of the derivative at the midpoint.
The accuracy of Eq.(A1) was examined by using a fourth-

order polynomial forF̃sx̃d and comparing the numerical re-
sult for the integral with a more precise result obtained with
a finer grid. The error was found to be less than of order 10−6

with 100 grid points on the interval. A high level of accuracy
is needed because the integration of Poisson’s equation de-
pends upon the small difference between the electron and ion
densities which is of orderslD /Ld2. The accuracy is insuffi-
cient if the number of terms in the sum is too small. An
initializing interval of 0.15L was found to give a sufficiently
large number of terms. The sum over previous points results
in the computation time scaling as the square of the number
of grid points.

Poisson’s equation is integrated using the second-order
relation [14]

F̃sx̃k+1d = 2F̃sx̃d − F̃sx̃k−1d − sDx̃d2fñisx̃kd − ñesx̃kdg.

sA4d

A very small step size,ø0.05, is necessary to avoid numeri-
cal instability with either this second-order method or with
fourth-order Runge-Kutta. The small step size makes the
second-order method sufficiently accurate. If fourth-order
Runge-Kutta is used, there is a need to evaluate the integral
for nisxd within the derivatives subroutine andDx takes on
half the usual value in two of the four evaluations of the
derivative. The fourth-order method is thus more compli-
cated and does not offer an advantage in step size because
this is limited by numerical stability. The fourth-order
method was implemented for a few cases, and the values
found for x̃w (for example) differed by only a few percent
from values obtained from the second-order method.

For the particle model, sufficient accuracy for the density
requires that the ions be given an average velocity calculated
for the region between the gridpoint at the birth location and
the next grid point. The average defined by

vi,k =
1

2
FÎ2q

mi
fFsxid − Fsxkdg +Î2q

mi
fFsxi+1d − FsxkdgG ,

sA5d

gives a value for density contribution that is sufficiently ac-
curate.
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